Surface modification of cellulose nanocrystals via SI-AGET ATRP and application in waterborne coating for removing of formaldehyde

2022 
Abstract The hazardous indoor air pollutants of formaldehyde (HCHO) are harmful for human health. Nowadays, it is important to design and fabricate green and efficient HCHO removal materials for HCHO removal from polluted indoor air. In this manuscript, cellulose nanocrystals (CNCs) as green nanomaterials were successfully surface-initiated by 2-(methacryloyloxy)ethyl acetoacetate (MEAA) as functional monomer via surface-initiated Activator Generated by Electron Transfer Atom Transfer Radical Polymerization (SI-AGET ATRP) for the application in removal of HCHO. The employment of CNCs/Poly(2-(methacryloyloxy)ethyl acetoacetate) (CNCs@PMEAA) as nanocomposites were further implanted self-healing waterborne coating for an effective way to remove of HCHO. From the result, the HCHO removal efficiency reached 97.5% of CNCs@PMEAA-type coating within 300 min at room temperature, which was much higher than that of the conventional coating (82.8%). This study provides some promising green method for designing nanocomposite's waterborne coating to remove HCHO at room temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map