An efficient method for the elastic field in a transversely isotropic full space due to arbitrary inclusions

2020 
Abstract The present study is on the analytical solution for the elastic field due to a cuboidal inclusion of uniform eigenstrain within a transversely isotropic full-space material, and a numerical method to model inclusions of any arbitrary shapes and with any eigenstrain distributions as the integration of a set of such cuboidal inclusions. The fast Fourier transform (FFT) is applied for efficient computation. The developed method and results are implemented to analyze the elastic field in a transversely isotropic full-space material containing inclusions of different shapes, different eigenstrain distributions, and multiple cuboids of different densities. Furthermore, the effect of material anisotropy on the stress field subjected to a spherical inclusion with pure dilatant eigenstrains is explored by comparing the behavior of a transversely isotropic material with that of a corresponding isotropic one. The numerical results show that the induced stresses are drastically influenced by the Young’s moduli of transversely isotropic materials, and that material constant C 33 has a large influence on normal stress σ 33 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map