Nitrous oxide hot moments and cold spots in a subtropical estuary: Floods and mangroves

2021
Abstract Flood events can transport large nitrogen loads to the ocean in short periods with the potential to produce significant nitrous oxide (N2O) emissions along an estuarine gradient. Here, we evaluate temporal and spatial N2O air-water fluxes from both seasonal, and flood-event timescales in an urban subtropical estuary surrounded by mangroves (Coffs Creek, Australia). Overall, the estuary was a minor atmospheric source of N2O with emissions of 3.9 ± 1.2 μmol m−2 d−1. However, the mangrove-dominated lower estuary was a sink of N2O in the dry months (−5.4 ± 2.2 μmol m−2 d−1), then a source in the wet months (11.7 ± 1.6 μmol m−2 d−1) and also during an eight-day flood event (66.9 ± 9.8 μmol m−2 d−1). The flood event drove changes in estuary N2O dynamics, creating a ‘hot moment’ with the highest N2O emissions following the transport of nitrate + nitrite (NOX) from the modified catchment. The hot moment coincided with a 13-fold increase in mean daily N2O emissions and increased annual net emissions estimates to the atmosphere by 41%. In the mangrove-dominated creek sections, N2O was consumed in the dry conditions (cold spots). Seasonal variation was prominent in the attenuation and consumption of N2O in the mangrove dominated sections of the creek, while flood events potentially reduce natural creek NOX attenuation capacity and elevate N2O emissions. Without observation s in both seasonal and episodic rainfall timeframes, estuarine N2O studies in subtropical regions may underestimate N2O emissions and budgets.
    • Correction
    • Source
    • Cite
    • Save
    58
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map