Pairing reentrance in warm rotating $^{104}$Pd nucleus

2015 
Pairing reentrance phenomenon in the warm rotating $^{104}$Pd nucleus is studied within the Bardeen-Cooper-Schrieffer (BCS)-based approach (the FTBCS1). The theory takes into account the effect of quasiparticle number fluctuations on the pairing field at finite temperature and angular momentum within the pairing model plus noncollective rotation along the symmetry axis. The numerical calculations for the pairing gaps and nuclear level densities (NLD), of which an anomalous enhancement has been experimentally observed at low excitation energy $E^*$ and high angular momentum $J$, show that the pairing reentrance is seen in the behavior of pairing gap obtained within the FTBCS1 at low $E$ and high $J$. This leads to the enhancement of the FTBCS1 level densities, in good agreement with the experimental observation. This agreement indicates that the observed enhancement of the NLD might be the first experimental detection of the pairing reentrance in a finite nucleus.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map