North Atlantic gyre circulation in PRIMAVERA models

2021
We study the impact of horizontal resolution in setting the North Atlantic gyre circulation and representing the ocean–atmosphere interactions that modulate the low-frequency variability in the region. Simulations from five state-of-the-art climate models performed at standard and high-resolution as part of the High-Resolution Model Inter-comparison Project (HighResMIP) were analysed. In some models, the resolution is enhanced in the atmospheric and oceanic components whereas, in some other models, the resolution is increased only in the atmosphere. Enhancing the horizontal resolution from non-eddy to eddy-permitting ocean produces stronger barotropic mass transports inside the subpolar and subtropical gyres. The first mode of inter-annual variability is associated with the North Atlantic Oscillation (NAO) in all the cases. The rapid ocean response to it consists of a shift in the position of the inter-gyre zone and it is better captured by the non-eddy models. The delayed ocean response consists of an intensification of the subpolar gyre (SPG) after around 3 years of a positive phase of NAO and it is better represented by the eddy-permitting oceans. A lagged relationship between the intensity of the SPG and the Atlantic Meridional Overturning Circulation (AMOC) is stronger in the cases of the non-eddy ocean. Then, the SPG is more tightly coupled to the AMOC in low-resolution models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map