Glycosyltransferase POMGNT1 deficiency affects N-cadherin-mediated cell-cell adhesion

2020
Defects in protein O-mannosylation lead to severe congenital muscular dystrophies known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which leads to a reduction in cell adhesion to the extracellular matrix. Mutations in protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, are mainly associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, direct molecular mechanisms are largely unknown. We used POMGNT1 knock-out HEK293T cells and fibroblasts from a MEB patient to gain a deeper insight into the molecular changes in POMGNT1 deficiency. A combination of biochemical and molecular biological techniques with proteomics, glycoproteomics and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. We found that in POMGNT1 deficient cells ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable to the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general, and suggests a previously underestimated impact of changes in O-mannosylation on N-glycosylation.
    • Correction
    • Source
    • Cite
    • Save
    67
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map