Design and Implementation of Symmetric Legged Robot for Highly Dynamic Jumping and Impact Mitigation.

2021
Aiming at highly dynamic locomotion and impact mitigation, this paper proposes the design and implementation of a symmetric legged robot. Based on the analysis of the three-leg topology in terms of force sensitivity, force production, and impact mitigation, the symmetric leg was designed and equipped with a high torque density actuator, which was assembled by a custom motor and two-stage planetary. Under the kinematic and dynamic constraints of the robot system, a nonlinear optimization for high jumping and impact mitigation is proposed with consideration of the peak impact force at landing. Finally, experiments revealed that the robot achieved a jump height of 1.8 m with a robust landing, and the height was equal to approximately three times the leg length.
    • Correction
    • Source
    • Cite
    • Save
    20
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map