Aerobic Bacteria Produce Nitric Oxide via Denitrification and Trigger Algal Population Collapse

2021
Microbial interactions govern marine biogeochemistry. These interactions are generally considered to rely on exchange of organic molecules. Here we report on a novel inorganic route of microbial communication, showing that algal-bacterial interactions are mediated through inorganic nitrogen exchange. Under oxygen-rich conditions, aerobic bacteria reduce algal-secreted nitrite to nitric oxide (NO) through denitrification, a well-studied anaerobic respiration mechanism. Bacteria secrete NO, triggering a cascade in algae akin to programmed cell death. During death, algae further generate NO, thereby propagating the signal in the algal population. Eventually, the algal population collapses, similar to the sudden demise of oceanic algal blooms. Our study suggests that the exchange of denitrification intermediates, particularly in oxygenated environments, is an overlooked yet ecologically significant route of microbial communication within and across kingdoms.
    • Correction
    • Source
    • Cite
    • Save
    95
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map