Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model

2020
Abstract. Aerosol and cloud-induced changes in diffuse light have important impacts on the global land carbon cycle by changing light distribution and photosynthesis in vegetation canopies. However, this effect remains poorly represented in current land surface models. Here we add a light partitioning module and a new canopy light transmission module to the ORCHIDEE land surface model (trunk version, v5453) and use the revised model, ORCHIDEE_DF, to estimate the fraction of diffuse light and its effect on gross primary production (GPP) in a multi-layer canopy. We evaluate the new parameterizations using flux observations from 159 eddy covariance sites over the globe. Our results show that compared to the original model, ORCHIDEE_DF improves the GPP simulation under sunny conditions and captures the observed higher photosynthesis under cloudier conditions in most plant functional types (PFTs). Our results also indicate that the larger GPP under cloudy conditions compared to sunny conditions is mainly driven by increased diffuse light in the morning and in the afternoon, and by decreased VPD and air temperature at midday. The observations show strongest positive effects of diffuse light on photosynthesis are found in the range 5–20 °C and VPD
    • Correction
    • Source
    • Cite
    • Save
    60
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map