Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy.

2021
Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway during fetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development (FMCD) and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR in the formation of FMCD and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics since these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient FMCD tissue and in a mouse model of FMCD. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by mTOR in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern, and aberrant expression of HCN4 channels. Further, 4E-BP1 expression in juvenile FMCD mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat FMCD-related epilepsy during childhood with potentially long-lasting effects in adults.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map