The Role of Sulfate-Rich Springs and Groundwater in the Formation of Sinkholes over Gypsum in Eastern England

2013 
Heavily karstified gypsum and dolomite aquifers occur in the Permian (Zechstein Group) of Eastern England. Here rapid active gypsum dissolution causes subsidence and abundant sinkholes affect an approximately 140-km by 3-km area from Darlington, through Ripon to Doncaster. The topography and easterly dip of the strata feed artesian water through the dolomite up into the overlying gypsum sequences. The shallow-circulating groundwater emerges as sulfate-rich springs with temperatures between 9-12 oC, many emanating from sinkholes that steam and do not freeze in the winter (such as Hell Kettles, Darlington). Water also circulates from the east through the overlying Triassic sandstone aquifer. Calcareous tufa deposits and tufa-cemented gravels also attest to the passage and escape of this groundwater. The sizes of the sinkholes, their depth and that of the associated breccia pipes is controlled by the thickness of gypsum that can dissolve and by the bulking factors associated with the collapsed rocks. The presence of sulfate-rich water affects the local potability of the supply. Groundwater abstraction locally aggravates the subsidence problems, both by active dissolution and drawdown. Furthermore, the gypsum and dolomite karstification has local implications for the installation of ground-source heat pumps. The sulfate-rich springs show where active subsidence is expected; their presence along with records of subsidence can inform planning and development of areas requiring mitigation measures.
    • Correction
    • Source
    • Cite
    • Save
    9
    References
    6
    Citations
    NaN
    KQI
    []
    Baidu
    map