Switching on prodrugs using radiotherapy.

2021 
Chemotherapy is a powerful tool in the armoury against cancer, but it is fraught with problems due to its global systemic toxicity. Here we report the proof of concept of a chemistry-based strategy, whereby gamma/X-ray irradiation mediates the activation of a cancer prodrug, thereby enabling simultaneous chemo-radiotherapy with radiotherapy locally activating a prodrug. In an initial demonstration, we show the activation of a fluorescent probe using this approach. Expanding on this, we show how sulfonyl azide- and phenyl azide-caged prodrugs of pazopanib and doxorubicin can be liberated using clinically relevant doses of ionizing radiation. This strategy is different to conventional chemo-radiotherapy radiation, where chemo-sensitization of the cancer takes place so that subsequent radiotherapy is more effective. This approach could enable site-directed chemotherapy, rather than systemic chemotherapy, with ‘real time’ drug decaging at the tumour site. As such, it opens up a new era in targeted and directed chemotherapy. Prodrugs offer one route to treat cancer, but they require activation once they have been delivered to the tumour. Now, a simultaneous chemo-radiotherapy strategy has been demonstrated in mice that uses gamma or X-ray irradiation to locally activate an anticancer prodrug.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map