A 13C(d,n)-based epithermal neutron source for Boron Neutron Capture Therapy

2017 
Abstract Purpose Boron Neutron Capture Therapy (BNCT) requires neutron sources suitable for in-hospital siting. Low-energy particle accelerators working in conjunction with a neutron producing reaction are the most appropriate choice for this purpose. One of the possible nuclear reactions is 13 C(d,n) 14 N. The aim of this work is to evaluate the therapeutic capabilities of the neutron beam produced by this reaction, through a 30 mA beam of deuterons of 1.45 MeV. Methods A Beam Shaping Assembly design was computationally optimized. Depth dose profiles in a Snyder head phantom were simulated with the MCNP code for a number of BSA configurations. In order to optimize the treatment capabilities, the BSA configuration was determined as the one that allows maximizing both the tumor dose and the penetration depth while keeping doses to healthy tissues under the tolerance limits. Results Significant doses to tumor tissues were achieved up to ∼6 cm in depth. Peak doses up to 57 Gy-Eq can be delivered in a fractionated scheme of 2 irradiations of approximately 1 h each. In a single 1 h irradiation, lower but still acceptable doses to tumor are also feasible. Conclusions Treatment capabilities obtained here are comparable to those achieved with other accelerator-based neutron sources, making of the 13 C(d,n) 14 N reaction a realistic option for producing therapeutic neutron beams through a low-energy particle accelerator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    9
    Citations
    NaN
    KQI
    []
    Baidu
    map