Laser-synthesized nanocrystalline, ferroelectric, bioactive BaTiO3/Pt/FS for bone implants:

2018 
The goal of our study is to design BaTiO3 ferroelectric layers that will cover metal implants and provide improved osseointegration. We synthesized ferroelectric BaTiO3 layers on Pt/fused silica substrates, and we studied their physical and bio-properties. BaTiO3 and Pt layers were prepared using KrF excimer laser ablation at substrate temperature Ts in the range from 200°C to 750°C in vacuum or under oxygen pressure of 10 Pa, 15 Pa, and 20 Pa. The BaTiO3/Pt and Pt layers adhered well to the substrates. BaTiO3 films of crystallite size 60–140 nm were fabricated. Ferroelectric loops were measured and ferroelectricity was also confirmed using Raman scattering measurements. Results of atomic force microscopy topology and the X-ray diffraction structure of the BaTiO3/Pt/fused silica multilayers are presented. The adhesion, viability, growth, and osteogenic differentiation of human osteoblast-like Saos-2 cells were also studied. On days 1, 3, and 7 after seeding, the lowest cell numbers were found on non-ferro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map