Transcriptional dynamics of methane-cycling microbiomes are linked to seasonal CH4 fluxes in two hydromorphic and organic-rich grassland soils

2021 
Soil CH4 fluxes are driven by CH4-producing and -consuming microorganisms that determine whether soils are sources or sinks of this potent greenhouse gas. Using quantitative metatranscriptomics, we linked CH4-cycling microbiomes to net surface CH4 fluxes throughout a year in two drained peatland soils differing in grassland land-use intensity and physicochemical properties. CH4 fluxes were highly dynamic; both soils were net CH4 sources in autumn and winter and sinks in spring and summer. Despite similar net CH4 emissions, methanogen and methanotroph loads, as determined by small subunit rRNA transcripts per gram soil, differed strongly between sites. In contrast, mRNA transcript abundances were similar in both soils and correlated well with CH4 fluxes. The methane monooxygenase to methanogenesis mRNA ratio was higher in spring and summer, when the soils were net CH4 sinks. CH4 uptake was linked to an increased proportion of USC and {gamma} and pmoA2 pmoA transcripts. We assume that methanogen transcript abundance may be useful to approximate changes in net surface CH4 emissions from drained peat soils; high methanotroph to methanogen ratios would indicate CH4 sink properties. Our study shows the strength of quantitative metatranscriptomics; mRNA transcript abundance holds promising indicator to link soil microbiome functions to ecosystem-level processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map