A Long-Lived Triplet State Is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins

2018 
Though ubiquitously used as selective fluorescence markers in cellular biology, fluorescent proteins (FPs) still have not disclosed all of their surprising properties. One important issue, notably for single-molecule applications, is the nature of the triplet state, suggested to be the starting point for many possible photochemical reactions leading to phenomena such as blinking or bleaching. Here, we applied transient absorption spectroscopy to characterize dark states in the prototypical enhanced green fluorescent protein (EGFP) of hydrozoan origin and, for comparison, in IrisFP, a representative phototransformable FP of anthozoan origin. We identified a long-lived (approximately 5 ms) dark state that is formed with a quantum yield of approximately 1% and has pronounced absorption throughout the visible–NIR range (peak at around 900 nm). Detection of phosphorescence emission with identical kinetics and excitation spectrum allowed unambiguous identification of this state as the first excited triplet stat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    14
    Citations
    NaN
    KQI
    []
    Baidu
    map