Inorganic polyphosphate potentiates lipopolysaccharide-induced macrophage inflammatory response

2020
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate units that are linked by phosphoanhydride bonds and is involved in various pathophysiological processes. However, the role of polyP in immune cell dysfunction is not well-understood. In this study, using several biochemical and cell biology approaches, including cytokine assays, immunofluorescence microscopy, receptor-binding assays with quartz crystal microbalance, and dynamic light scanning, we investigated the effect of polyP on in vitro lipopolysaccharide (LPS)-induced macrophage inflammatory response. PolyP up-regulated LPS-induced production of the inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1beta, and interleukin-6, in macrophages, and the effect was polyP dose- and chain length-dependent. However, orthophosphate did not exhibit this effect. PolyP enhanced the LPS-induced intracellular macrophage inflammatory signals. Affinity analysis revealed that polyP interacts with LPS, inducing formation of small micelles, and the polyP-LPS complex enhanced the binding affinity of LPS to Toll-like receptor 4 (TLR4) on macrophages. These results suggest that inorganic polyP plays a critical role in promoting inflammatory response by enhancing the interaction between LPS and TLR4 in macrophages.
    • Correction
    • Source
    • Cite
    • Save
    22
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map