Quantum sensing protocol for motionally chiral Rydberg atoms

2021 
A quantum sensing protocol is proposed for demonstrating the motion-induced chirality of circularly polarised Rydberg atoms. To this end, a cloud of Rydberg atoms is dressed by a bichromatic light field. This allows to exploit the long-lived ground states for implementing a Ramsey interferometer in conjunction with a spin echo pulse sequence for refocussing achiral interactions. Optimal parameters for the dressing lasers are identified. Combining a circularly polarised dipole transition in the Rydberg atom with atomic centre-of-mass motion, the system becomes chiral. The resulting discriminatory chiral energy shifts induced by a chiral mirror are estimated using a macroscopic quantum electrodynamics approach. The presented quantum sensing protocol will also provide an indirect proof for Casimir–Polder quantum friction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map