Defining the therapeutic selective dependencies for distinct subtypes of PI3K pathway-altered prostate cancers

2021
Previous studies have suggested that PTEN loss is associated with p110β signaling dependency, leading to the clinical development of p110β-selective inhibitors. Here we use a panel pre-clinical models to reveal that PI3K isoform dependency is not governed by loss of PTEN and is impacted by feedback inhibition and concurrent PIK3CA/PIK3CB alterations. Furthermore, while pan-PI3K inhibition in PTEN-deficient tumors is efficacious, upregulation of Insulin Like Growth Factor 1 Receptor (IGF1R) promotes resistance. Importantly, we show that this resistance can be overcome through targeting AKT and we find that AKT inhibitors are superior to pan-PI3K inhibition in the context of PTEN loss. However, in the presence of wild-type PTEN and PIK3CA-activating mutations, p110α-dependent signaling is dominant and selectively inhibiting p110α is therapeutically superior to AKT inhibition. These discoveries reveal a more nuanced understanding of PI3K isoform dependency and unveil novel strategies to selectively target PI3K signaling nodes in a context-specific manner. Understanding the mechanisms driving PI3K isoform dependency in prostate cancer can help the design of future clinical trials. Here, the authors show that gain-of-function mutations in PIK3CA or PIK3CB can confer PI3K p110 isoform dependency and that the direct inhibition of AKT may be superior to PI3K inhibition in PTEN-deficient prostate cancers.
    • Correction
    • Source
    • Cite
    • Save
    53
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map