Sensing flexural motion of a photonic crystal membrane with InGaAs quantum dots

2017 
Optical coupling between quantum dots and photonic crystal cavities and waveguides has been studied for many years in order to explore interesting physics and to advance quantum technologies. Here, we demonstrate strain-based coupling between mechanical motion of a photonic crystal membrane and embedded single InGaAs quantum dots. The response to high frequency mechanical vibration is measured for a series of quantum dots along the length of a photonic crystal waveguide for several flexural modes by optically driving the membrane while measuring high resolution time-resolved photoluminescence. The position-dependent response is similar to the measured and calculated displacement profile of the membrane but falls off less rapidly at higher frequencies. These results indicate potential for nanoscale strain sensing with high bandwidth and sensitivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    11
    Citations
    NaN
    KQI
    []
    Baidu
    map