Self-forming nanogap diodes operate beyond 10 GHz enabled via adhesion lithography (Conference Presentation)

2020
Harnessing the omnipresent radio frequency (RF) waves intend to explore the new diode technologies as they determine the frequency of operation and ultimately the power conversion efficiency. Recently, a considerable effort focused on performance, reliable and low-cost fabrication methods. Here, we report the fabrication of sub-20 nm co-planar, asymmetric and self-forming nanogap electrodes by adhesion lithography (a-Lith) as an alternative, low-cost and large-area patterning technique. Moreover, solution processing and rapid Flash Lamp Annealing (FLA) route employed to fabricate Schottky diodes. These diodes are having more than 104 On/Off ratio, low series resistance and junction capacitance due to the novel co-planar architecture and thus operating beyond 10 GHz. This paves the way to a radically new diode technology that has a huge impact on the IoT – Wireless Energy Harvesting (WEH) and RFID system.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map