High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole

2021 
Abstract The development of zinc-ion storage cathode materials for aqueous zinc-ion batteries (AZIBs) is a necessary step for the construction of large-scale electrochemical energy conversion and storage devices. Iron-doped alpha-manganese dioxide (α-MnO2) nanocomposites were achieved in this study via pre-intercalation of Fe3+ during the formation of α-MnO2 crystals. A polypyrrole (PPy) granular layer was fabricated on the surface of α-MnO2 using acid-catalyzed polymerization of pyrroles. The pre-intercalation of Fe3+ effectively enlarges the lattice spacing of α-MnO2 and consequently decreases the hindrance for Zn2+ insertion/extraction in the iron-doped α-MnO2 coated by PPy (Fe/α-MnO2@PPy) composite. Meanwhile, the PPy buffer layer can ameliorate electron and ion conductivity and prevent dissolution of α-MnO2 during the charge/discharge process. This unique structure makes the Fe/α-MnO2@PPy composite an efficient zinc-ion storage cathode for AZIBs. The targeted Fe/α-MnO2@PPy cathode achieves superior performance with reversible specific capacity (270 mA h g−1 at 100 mA g−1) and exhibits high diffusion coefficient of 10−10–10−14 cm−2 s−1. Therefore, a feasible approach is implemented on advanced electrode materials using in AZIBs for practical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map