DSCOVR-EPIC MAIAC AOD - A Proxy for Understanding Aerosol Diurnal Patterns from Space

2019
The Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR views the entire sunlit Earth from sunrise to sunset, every 1-2 hours, at scattering angles between 168.5° and 175.5° with 10 narrowband filters in the range of 317-779 nm. NASA Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm, originally developed for MODIS, has been applied to EPIC data with an Aerosol Optical Depth (AOD) product at 440nm with a 10km spatial resolution. This high temporal resolution product is a unique dataset for investigating diurnal patterns in aerosols from space. Our work analyzed the capability of the satellite-borne data to capture the aerosol diurnal variation by associating it with AERONET AOD at 440nm data over the contiguous US. We validated the DSCOVR MAIAC AOD data over 100 AERONET stations during 2015-2018, and examined the contribution of the surface reflectance and relevant acquisition angles, derived by the MAIAC algorithm, to the predicted error. We used over 180,000 hourly DSCOVR-EPIC MAIAC AOD observations with collocated with AERONET AOD observations averaged over +-30 minutes from the satellite overpass time. The AERONET and DSCOVR AOD temporal patterns show that the diurnal variation is different across US AERONET sites, with higher diurnal variation in the DSCOVR dataset in general.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map