Identifying developing interneurons as a potential target for multiple genetic autism risk factors in human and rodent forebrain.

2021 
Autism spectrum condition or autism is associated with numerous monogenic and polygenic genetic risk factors including the polygenic 16p11.2 microdeletion. A central question is what neural cells are affected. To systematically investigate we analysed single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and identified a subset of interneurons (INs) first appearing at GW23 with enriched expression of a disproportionately large fraction of risk factor transcripts. This suggests the hypothesis that these INs are disproportionately vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2+/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. This study prompts deeper investigation of IN development as a convergent target for autism genetic risk factors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map