Carboxymethyl Cellulose Stabilized Ferrous Sulfide@Extracellular Polymeric Substance for Cr(VI) Removal: Characterization, Performance, and Mechanism

2021 
Abstract Iron-based materials, especially ferrous sulfide (FeS), effectively remediate chromium pollution. However, the agglomeration of FeS reduces its reactivity to chromium. Herein, carboxymethyl cellulose stabilized ferrous sulfide@extracellular polymeric substance (CMC-FeS@EPS) was developed to remove hexavalent chromium (Cr(VI)) from water. CMC-FeS@EPS (98.00%) exhibited excellent removal efficiency of 40 mg/L Cr(VI) than those of FeS (57.35%) and CMC-FeS (68.60%). CMC-FeS@EPS showed good removal efficiency of Cr(VI) in wide pH range (from 4 to 9) and the co-existence of ions. FTIR and XPS results demonstrated that EPS functional group accelerated the process of adsorption and precipitation. Electrochemical results showed that CMC-FeS@EPS transferred electrons to Cr(VI) faster than CMC-FeS. In total, this study started from a new idea of using EPS to improve the performance of CMC-FeS, and provided a simple and effective way to remediate chromium pollution without secondary pollution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map