Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models

2020 
Abstract. The correct representation of Antarctic clouds in atmospheric models is crucial for accurate projections of the future Antarctic climate. This is particularly true for summer clouds which play a critical role in the surface melting of the ice-shelf in the vicinity of Weddell Sea. However these clouds are often poorly represented, as ice crystal number concentrations (ICNCs) are undepredicted by atmospheric models, even when primary ice formation is constrained with aerosol measurements. Rime-splintering, thought to be the dominant secondary ice production (SIP) mechanism at temperatures between −8 and −3 °C, is also very weak in summer Antarctic conditions. Including a parameterization for SIP due to break-up (BR) from collisions between ice particles in the Weather and Research Forecasting model bridges the gap between observations and simulations, suggesting that BR could account for the enhanced ICNCs in the pristine Antarctic atmosphere. These results are insensitive to uncertainties in primary ice production. The BR mechanism is currently not represented in most weather prediction and climate models; including this process can have a significant impact on the Antarctic radiation budget and thus in projections of the future regional climate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    8
    Citations
    NaN
    KQI
    []
    Baidu
    map