EHR-Integrated Monitor Data to Measure Pulse Oximetry Use in Bronchiolitis.

2021
BACKGROUND AND OBJECTIVES Continuous pulse oximetry (oxygen saturation [Spo2]) monitoring in hospitalized children with bronchiolitis not requiring supplemental oxygen is discouraged by national guidelines, but determining monitoring status accurately requires in-person observation. Our objective was to determine if electronic health record (EHR) data can accurately estimate the extent of actual Spo2 monitoring use in bronchiolitis. METHODS This repeated cross-sectional study included infants aged 8 weeks through 23 months hospitalized with bronchiolitis. In the validation phase at 3 children’s hospitals, we calculated the test characteristics of the Spo2 monitor data streamed into the EHR each minute when monitoring was active compared with in-person observation of Spo2 monitoring use. In the application phase at 1 children’s hospital, we identified periods when supplemental oxygen was administered using EHR flowsheet documentation and calculated the duration of Spo2 monitoring that occurred in the absence of supplemental oxygen. RESULTS Among 668 infants at 3 hospitals (validation phase), EHR-integrated Spo2 data from the same minute as in-person observation had a sensitivity of 90%, specificity of 98%, positive predictive value of 88%, and negative predictive value of 98% for actual Spo2 monitoring use. Using EHR-integrated data in a sample of 317 infants at 1 hospital (application phase), infants were monitored in the absence of oxygen supplementation for a median 4.1 hours (interquartile range 1.4–9.4 hours). Those who received supplemental oxygen experienced a median 5.6 hours (interquartile range 3.0–10.6 hours) of monitoring after oxygen was stopped. CONCLUSIONS EHR-integrated monitor data are a valid measure of actual Spo2 monitoring use that may help hospitals more efficiently identify opportunities to deimplement guideline-inconsistent use.
    • Correction
    • Source
    • Cite
    • Save
    26
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map