A strong neutron burst in jet-like supernovae of spinstars

2020 
Some metal-poor stars have abundance patterns which are midway between the slow (s) and rapid (r) neutron capture processes. We show that the helium shell of a fast rotating massive star experiencing a jet-like explosion undergoes two efficient neutron capture processes: one during stellar evolution and one during the explosion. It eventually provides a material whose chemical composition is midway between the s- and r-process. A low metallicity 40~$M_{\odot}$ model with an initial rotational velocity of $\sim 700$~km~s$^{-1}$ was computed from birth to pre-supernova with a nuclear network following the slow neutron capture process. A 2D hydrodynamic relativistic code was used to model a $E = 10^{52}$~erg relativistic jet-like explosion hitting the stellar mantle. The jet-induced nucleosynthesis was calculated in post-processing with a network of 1812 nuclei. During the star's life, heavy elements from $30 \lesssim Z \lesssim 82$ are produced thanks to an efficient s-process, which is boosted by rotation. At the end of evolution, the helium shell is largely enriched in trans-iron elements and in (unburnt) $^{22}$Ne, whose abundance is $\sim 20$ times higher than in a non-rotating model. During the explosion, the jet heats the helium shell up to $\sim 1.5$ GK. It efficiently activates ($\alpha,n$) reactions, such as $^{22}$Ne($\alpha,n$), and leads to a strong n-process with neutron densities of $\sim 10^{19} - 10^{20}$~cm$^{-3}$ during $0.1$~second. This has the effect of shifting the s-process pattern towards heavier elements (e.g. Eu). The resulting chemical pattern is consistent with the abundances of the carbon-enhanced metal-poor r/s star CS29528-028, provided the ejecta of the jet model is not homogeneously mixed. This is a new astrophysical site which can explain at least some of the metal-poor stars showing abundance patterns midway between the s- and r-process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    110
    References
    6
    Citations
    NaN
    KQI
    []
    Baidu
    map