Long Carrier Diffusion Length in Two-Dimensional Lead Halide Perovskite Single Crystals

2021
SUMMARYRuddlesden-Popper (RP) perovskites are two-dimensional semiconductors for high performance devices. In this work, we report a long in-plane charge carrier diffusion length in 2D RP perovskite single crystals probed by scanning photocurrent microscopy. Carrier diffusion lengths of 7~14 µm are observed when the number of PbI6-2 octahedrons between organic spacers increases from 1 to 3. By detailed light intensity and electric field-dependent photocurrent measurements, we attribute the observed long diffusion length to the dominating dissociated free carrier transport. This is further validated by time-resolved photoluminescence measurements where the decay lifetime increases in the presence of an electric field. From our experiments, we conclude that the in-plane transport in RP perovskites is efficient because of the partial free carrier generation overcoming strong excitonic effects. Our results suggest that semiconducting devices fabricated from RP perovskite single crystals can be as efficient as their 3D counterparts.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map