RNA Sequencing Analyses Reveal the Potential Mechanism of Pulmonary Injury Induced by Gallium Arsenide Particles in Human Bronchial Epithelioid Cells.

2020 
Extensive use of gallium arsenide (GaAs) has led to increased exposure to humans working in the semiconductor industry. This study employed physicochemical characterization of GaAs obtained from a workplace, cytotoxicity analysis of damage induced by GaAs in 16HBE cells, RNA-seq and related bioinformatic analysis, qRT-PCR verification and survival analysis to comprehensively understand the potential mechanism leading to lung toxicity induced by GaAs. We found that GaAs-induced abnormal gene expression was mainly related to the cellular response to chemical stimuli, the regulation of signalling, cell differentiation and the cell cycle, which are involved in transcriptional misregulation in cancer, the MAPK signalling pathway, the TGF-β signalling pathway and pulmonary disease-related pathways. Ten upregulated genes (FOS, JUN, HSP90AA1, CDKN1A, ESR1, MYC, RAC1, CTNNB1, MAPK8 and FOXO1) and 7 downregulated genes (TP53, AKT1, NFKB1, SMAD3, CDK1, E2F1 and PLK1) related to GaAs-induced pulmonary toxicity were identified. High expression of HSP90AA1, RAC1 and CDKN1A was significantly associated with a lower rate of overall survival in lung cancers. The results of this study indicate that GaAs-associated toxicities affected the misregulation of oncogenes and tumour suppressing genes, activation of the TGF-β/MAPK pathway, and regulation of cell differentiation and the cell cycle. These results help to elucidate the molecular mechanism underlying GaAs-induced pulmonary injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map