H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation

2019 
Understanding the mechanism for electrochemical water oxidation is important for the development of more efficient catalysts for artificial photosynthesis. A basic step is the proton-coupled electron transfer, which enables accumulation of oxidizing equivalents without buildup of a charge. We find that substituting deuterium for hydrogen resulted in an 87% decrease in the catalytic activity for water oxidation on Co-based amorphous-oxide catalysts at neutral pH, while 16O-to-18O substitution lead to a 10% decrease. In situ visible and quasi-in situ X-ray absorption spectroscopy reveal that the hydrogen-to-deuterium isotopic substitution induces an equilibrium isotope effect that shifts the oxidation potentials positively by approximately 60 mV for the proton coupled CoII/III and CoIII/IV electron transfer processes. Time-resolved spectroelectrochemical measurements indicate the absence of a kinetic isotope effect, implying that the precatalytic proton-coupled electron transfer happens through a stepwise m...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    31
    Citations
    NaN
    KQI
    []
    Baidu
    map