Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification

2020 
Thermochemical heterogeneities detected today in the Earth’s mantle could arise from ongoing partial melting in different mantle regions. A major open question, however, is the level of chemical stratification inherited from an early magma-ocean (MO) solidification. Here we show that the MO crystallized homogeneously in the deep mantle, but with chemical fractionation at depths around 1000 km and in the upper mantle. Our arguments are based on accurate measurements of the viscosity of melts with forsterite, enstatite and diopside compositions up to ~30 GPa and more than 3000 K at synchrotron X-ray facilities. Fractional solidification would induce the formation of a bridgmanite-enriched layer at ~1000 km depth. This layer may have resisted to mantle mixing by convection and cause the reported viscosity peak and anomalous dynamic impedance. On the other hand, fractional solidification in the upper mantle would have favored the formation of the first crust. Following the impact of the protoplanet Theia, planet Earth likely transformed into a magma ocean. New high temperature and pressure experiments by Xie et al. suggest that a layer enriched in bridgmanite formed during the magma ocean phase of Earth–remnants of this ancient layer today may be responsible for the viscosity peak between 660 and 1500 km in present solid mantle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    13
    Citations
    NaN
    KQI
    []
    Baidu
    map