Selenium-doped two-photon fluorescent carbon nanodots for in-situ free radical scavenging in mitochondria

2020
Abstract Mitochondrial oxidative stress is associated with the occurrence and development of a wide range of human diseases. The development of methodologies to alleviate oxidative stress-mediated injury may have therapeutic potential. Herein, we report the design and preparation of triphenylphosphonium-functionalized selenium-doped carbon nanodots (TPP-Se-CDs) that can efficiently scavenging hydroxyl radicals (•OH) and superoxide anions (O2•-) in mitochondria region. Se-CDs with two-photon blue fluorescence were initially prepared by facile hydrothermal treatment of selenomethionine, followed by the covalent conjugation with TPP. The as-obtained TPP-Se-CDs showed high colloidal stability, strong scavenging abilities towards •OH and O2•-. Moreover, TPP-Se-CDs exhibited low cytotoxicity and mitochondria targeting ability. Taking advantages of these prominent features, TPP-Se-CDs have been successfully applied to combat H2O2 and phorbol 12-myristate 13-acetate (PMA) induced oxidative stress in mitochondria.
    • Correction
    • Source
    • Cite
    • Save
    49
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map