Pro108Ser mutant of SARS-CoV-2 3CL pro Reduces the Enzymatic Activity and Ameliorates COVID-19 Severity in Japan

2020
SARS-CoV-2 genome accumulates point mutations constantly. However, whether non-synonymous mutations affect COVID-19 severity through altering viral protein function remains unknown. SARS-CoV-2 genome sequencing revealed that the number of non-synonymous mutations correlated inversely with COVID-19 severity in Tokyo Metropolitan area. Phylogenic tree analyses identified two predominant groups which were differentiated by a set of six-point mutations (four non-synonymous amino acid mutations). Among them, Pro108Ser in 3 chymotrypsin-like protease (3CLpro) and Pro151Leu in nucleocapsid protein occurred at conserved locations among β-coronaviruses. Patients with these mutations (N = 48) indicated significantly lower odds ratio for developing hypoxia which required supplemental oxygen (odds ratio 0.24 [95% CI 0.07-0.88, p-value = 0.032]) after adjustments for age and sex, versus those lacking this haplotype in the canonical Clade 20B (N = 37). The Pro108Ser 3CLpro enzyme in vitro decreases in the activity by 58%, and the hydrogen/deuterium exchange mass spectrometry reveals that mechanisms for reduced activities involve structural perturbation at the substrate-binding region which is positioned behind and distant from the 108th amino acid residue of the enzyme. This mutant strain rapidly outcompeted pre-existing variants to become predominant in Japan. Our results may benefit the efforts underway to design small molecular compounds or antibodies targeting 3CLpro.
    • Correction
    • Source
    • Cite
    • Save
    33
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map