Direct measurement of lipid membrane disruption connects kinetics and toxicity of Aβ42 aggregation

2020 
The formation of amyloid deposits in human tissues is a defining feature of more than 50 medical disorders, including Alzheimer’s disease. Strong genetic and histological evidence links these conditions to the process of protein aggregation, yet it has remained challenging to identify a definitive connection between aggregation and pathogenicity. Using time-resolved fluorescence microscopy of individual synthetic vesicles, we show for the Aβ42 peptide implicated in Alzheimer’s disease that the disruption of lipid bilayers correlates linearly with the time course of the levels of transient oligomers generated through secondary nucleation. These findings indicate a specific role of oligomers generated through the catalytic action of fibrillar species during the protein aggregation process in driving deleterious biological function and establish a direct causative connection between amyloid formation and its pathological effects. Fluorescence microscopy and kinetics analyses reveal that Aβ42 oligomers generated through secondary nucleation are responsible for membrane disruption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    14
    Citations
    NaN
    KQI
    []
    Baidu
    map