Ultrasound-targeted nucleic acid delivery for solid tumor therapy.

2021 
Abstract Depending upon multiple factors, malignant solid tumors are conventionally treated by some combination of surgical resection, radiation, chemotherapy, and immunotherapy. Despite decades of research, therapeutic responses remain poor for many cancer indications. Further, many current therapies in our armamentarium are either invasive or accompanied by toxic side effects. In lieu of traditional pharmaceutics and invasive therapeutic interventions, gene therapies offer more flexible and potentially more durable approaches for new anti-cancer therapies. Nonetheless, many current gene delivery approaches suffer from low transfection efficiency due to physiological barriers limiting extravasation and uptake of genetic material. Additionally, systemically administered gene therapies may lack target-specificity, which can lead to off-target effects. To overcome these challenges, many preclinical studies have shown the utility of focused ultrasound (FUS) to increase macromolecule uptake in cells and tissue under image guidance, demonstrating promise for improved delivery of therapeutics to solid tumors. As FUS-based drug delivery is now being tested in several clinical trials around the world, FUS-targeted gene therapy for solid tumor therapy may not be far behind. In this review, we comprehensively cover the literature pertaining to preclinical attempts to more efficiently deliver therapeutic genetic material with FUS and offer perspectives for future studies and clinical translation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map