Crowdsourced mapping extends the target space of kinase inhibitors

2020 
Abstract Despite decades of intensive search for compounds that modulate the activity of particular targets, there are currently small-molecules available only for a small proportion of the human proteome. Effective approaches are therefore required to map the massive space of unexplored compound-target interactions for novel and potent activities. Here, we carried out a crowdsourced benchmarking of predictive models for kinase inhibitor potencies across multiple kinase families using unpublished bioactivity data. The top-performing predictions were based on kernel learning, gradient boosting and deep learning, and their ensemble resulted in predictive accuracy exceeding that of kinase activity assays. We then made new experiments based on the model predictions, which further improved the accuracy of experimental mapping efforts and identified unexpected potencies even for under-studied kinases. The open-source algorithms together with the novel bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking new prediction algorithms and for extending the druggable kinome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map