Smad2 and Smad3 expressed in skeletal muscle promote immobilization-induced bone atrophy in mice.

2021
Abstract Skeletal muscle is known to regulate bone homeostasis through muscle-bone interaction, although factors that control this activity remain unclear. Here, we newly established Smad3-flox mice, and then generated skeletal muscle-specific Smad2/Smad3 double conditional knockout mice (DcKO) by crossing Smad3-flox with skeletal muscle-specific Ckmm Cre and Smad2-flox mice. We show that immobilization-induced gastrocnemius muscle atrophy occurring due to sciatic nerve denervation was partially but significantly inhibited in DcKO mice, suggesting that skeletal muscle cell-intrinsic Smad2/3 is required for immobilization-induced muscle atrophy. Also, tibial bone atrophy seen after sciatic nerve denervation was partially but significantly inhibited in DcKO mice. Bone formation rate in wild-type mouse tibia was significantly inhibited by immobilization, but inhibition was abrogated in DcKO mice. We propose that skeletal muscle regulates immobilization-induced bone atrophy via Smad2/3, and Smad2/3 represent potential therapeutic targets to prevent both immobilization-induced bone and muscle atrophy.
    • Correction
    • Source
    • Cite
    • Save
    41
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map