Colorimetry and SERS dual-mode sensing of serotonin based on functionalized gold nanoparticles

2021
Abstract In this study, we reported a colorimetry and SERS dual-mode sensing of serotonin (5-HT) based on functionalized gold nanoparticles (AuNPs). Based on the amino and hydroxyl groups in 5-HT can react with dithiobis succinimidyl propionate (DSP) and N-acetyl-L-cysteine (NALC) respectively, we synthesized two kinds of functionalized AuNPs (DSP-AuNPs and NALC-AuNPs). A double interaction between functionalized nanoparticles and the hydroxyl and the amino group of serotonin led to interparticle-crosslinking aggregation. The aggregation of the two functionalized AuNPs can cause the plasmon coupling of AuNPs resulting in a color change visible to the naked eye and the enlargement of SERS “hot spot” area and the enhancement of SERS signal. Furthermore, two kinds of functionalized AuNPs can specifically recognize 5-HT and effectively reduce the interference of biomolecules with similar structure to 5-HT in the experiment. This dual-mode system has the advantages of low detection limit, high sensitivity and good selectivity, and the detection limit is 0.15 nmol L-1. Besides, the system was applied to the determination of 5-HT content in human serum, and the relative standard deviation (RSD) was lower than 3.75%, which indicated that the system had a good application prospect in the determination of biological samples.
    • Correction
    • Source
    • Cite
    • Save
    46
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map