Low-Cycle Fatigue Deformation Behavior and Evaluation of Fatigue Life on Extruded Magnesium Alloys

2011 
Abstract To evaluate fatigue deformation behavior and fatigue life of extruded magnesium alloy, total strain-controlled and stress-controlled low-cycle fatigue test of three extruded magnesium alloys, AZ31, AZ61 and AZ80, were performed in ambient atmosphere at room temperature using smooth round bar specimen. Mean tensile stress during total strain-controlled fatigue process and mean compressive strain during stress-controlled fatigue process appeared due to asymmetry of yield stress between tension and compression. The values of mean stress and mean strain appeared on three alloys were associated with the ratio of compressive yield stress to tensile one, which resulted in mechanical twinning in the compressive phase. Fatigue criteria proposed previously considering the mean stress effect were evaluated in terms of fatigue life predictions based on the experimental results. Also, an energy-based model taken into account of plastic and elastic energy density was discussed to predict the fatigue lives obtained from total strain- and stress-controlled fatigue experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    22
    Citations
    NaN
    KQI
    []
    Baidu
    map