Preparation of levodopa-loaded crystalsomes through thermally induced crystallization reverses functional deficits in Parkinsonian mice

2019 
Polymers that spontaneously self-assemble in water can form spherical micelles. These micelles are typically used in drug delivery and gene therapeutics. Importantly, the generated emulsion during the process of polymers self-assembly could be crystallized under suitable conditions. The formed crystal structure can enhance the mechanisms of nanoparticle formation. In this study, levodopa-loaded crystallization nanoparticles (LD crystalsomes) were prepared by a mini-emulsion crystallization method. The LD crystalsomes exhibited a positive zeta potential, nanoscale range and longer releasing time for levodopa (LD). Moreover, the therapeutic effects of LD crystalsomes on an MPTP-induced Parkinson's diseases (PD) mouse model were examined. The results showed that pre-administration twice with LD crystalsomes significantly enhanced locomotor activities and climbing times in the PD mouse model. For pathological changes, the numbers of the tyrosine hydroxylases positive neurons (TH+ neuron) of nigral and tyrosine hydroxylases (TH) protein expression of striatum were significantly increased than that in a PD mouse model. Besides, in comparison with bulk LD treatment, the LD crystalsomes administration exhibited better effects on improving behavioral deficits and TH expression. These results suggest that the unique crystalsomes represents a new type of nanoparticle and could be excellent potential drug carriers for drug control and release.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map