Structures of potent and convergent neutralizing antibodies bound to the SARS-CoV-2 spike unveil a unique epitope responsible for exceptional potency

2020
Understanding the mechanism of neutralizing antibodies (NAbs) against SARS-CoV-2 is critical for effective vaccines and therapeutics development. We recently reported an exceptionally potent NAb, BD-368-2, and revealed the existence of VH3-53/VH3-66 convergent NAbs in COVID-19. Here we report the 3.5 angstrom cryo-EM structure of the Fabs of BD-368-2 in complex with a mutation-induced prefusion-state-stabilized spike trimer. Unlike VH3-53/VH3-66 NAbs, BD-368-2 fully blocks ACE2 binding by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their up and down positions. BD-368-2 also triggers fusogenic-like structural rearrangements of the spike trimer, which could impede viral entry. Moreover, BD-368-2 completely avoids the common epitope of VH3-53/VH3-66 NAbs, evidenced by multiple crystal structures of their Fabs in tripartite complexes with RBD, suggesting a new way of pairing potent NAbs to prevent neutralization escape. Together, these results rationalize a unique epitope that leads to exceptional neutralization potency, and provide guidance for NAb therapeutics and vaccine designs against SARS-CoV-2.
    • Correction
    • Source
    • Cite
    • Save
    59
    References
    6
    Citations
    NaN
    KQI
    []
    Baidu
    map