Temporal Changes in Transcripts of MITE Transposable Elements during Rice Endosperm Development

2021
The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs are thought to escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. This genome-wide DNA demethylation is also observed in the endosperm after fertilization. In this study, we used a custom microarray to survey the transcripts generated from TEs during the rice endosperm development and at selected timepoints in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially for miniature inverted-repeat transposable elements (MITEs). Surprisingly, some TE transcripts were directionally controlled, while the other DNA transposons and retrotransposons were not. We also discovered the NF-Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.
    • Correction
    • Source
    • Cite
    • Save
    61
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map