Heat transfer during bubble shrinking in saturated He II under microgravity condition

2015
Microgravity experiments of He II boiling were carried out using a drop tower. The process of bubble shrinking in He II in microgravity was observed by a high speed camera. The time duration of the microgravity environment less than 1 mg was about 1.3 sec. First, a large spherical bubble of about 10 mm in diameter was created by a short wire heater (Diameter 0.05 x Length 2.82 mm) for a heating time of 0.4 sec. The subsequent bubble shrinking was visualized after the heater was switched off. The time variation of the volume of bubble was estimated by image analysis. The shrinking speed of bubble was calculated from these time variation data. The shrinking speed depends on the heat flux across the liquid-vapor interface. It is found that the heat flux across the interface in microgravity can be explained by the kinetic theorywith a pressure difference due to surface tension.
    • Correction
    • Source
    • Cite
    • Save
    4
    References
    3
    Citations
    NaN
    KQI
    []
    Baidu
    map