Partial charge transfer and absence of induced magnetization in EuS ( 111 ) / Bi 2 Se 3 heterostructures

2021 
Heterostructures made from topological and magnetic insulators promise to form excellent platforms for new electronic and spintronic functionalities mediated by interfacial effects. We report the results of a first-principles density functional theory study of the geometric, electronic structure, and magnetic properties of the $\mathrm{EuS}(111)/{\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ interface, including van der Waals and relativistic spin-orbit effects. In contrast to previous theoretical studies, we find no appreciable magnetic anisotropy in such a heterostructure. We also do not see additional induced magnetization at the interface or the magnetic proximity effect on the topological states. This is due to the localized nature of Eu moments and because of a partial charge transfer of $\ensuremath{\sim}0.5$ electron from Eu to Se. The formation of the surface dipole shifts the Dirac cone about 0.4 eV below the chemical potential, and the associated electrostatic screening moves the topological state from the first to the second quintuple layer of ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map