Kinetic Study of Torrefied Woody Biomass via TGA Using a Single Heating Rate and the Model-Fitting Method

2022
A model-fitting method at a single heating rate (10 °C·min-1) was used to investigate the thermal kinetic characteristics of torrefied woody biomass. The kinetic parameters were examined for pine, oak, and bamboo samples with the order of the reaction set ranging from 0.1 to 0.5 and 1.0. Based on the thermogravimetric, derivative thermogravimetric, and derivative2 thermogravimetric curves obtained, the ranges at which substantial hemicellulose and cellulose pyrolysis occurs were set as the analysis range, and the kinetic parameters of each species were analyzed. The activation energy and pre-exponential factor were obtained at these analytical ranges using two differential methods (Friedman and Chatterjee-Conard) and an integral method (Coats-Redfern). Although there were numerical differences between the results of the differential and integral methods, the thermal properties of each sample exhibited a consistent trend. Softwood was found to have the highest reactivity and intermolecular collisions per unit weight during thermal decomposition. In the case of the torrefied oak and torrefied bamboo, considering that the carbon content and fixed carbon content were approximately 24% to 25% higher than the softwood, it is appropriate to consider the thermal characteristics of each species for producing a solid fuel based on the application.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map