Optical properties of Central Asian aerosol relevant for spaceborne lidar applications and aerosol typing at 355 and 532 nm

2020
Abstract. For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), linear depolarization ratios, and backscatter- and extinction-related Angstrom exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign (March 2015 to August 2016). The presented seasonally resolved observations fill an important gap in the data base of aerosol optical properties used in aerosol typing efforts with spaceborne lidars and ground-based lidar networks. Lidar ratios and depolarization ratios are also basic input parameters in spaceborne lidar data analyses and in efforts to harmonize long-term observations with different space lidar systems operated either at 355 or 532 nm. As a general result, the found optical properties reflect the large range of occurring aerosol mixtures consisting of long-range-transported dust (from the Middle East and the Sahara), regional desert, soil, and salt dust, and anthropogenic pollution. The full range from highly polluted to pure dust situations could be observed. Typical dust depolarization ratios of 0.23–0.29 (355 nm) and 0.30–0.35 (532 nm) were observed. In contrast, comparably low lidar ratios were found. Dust lidar ratios at 532 nm accumulated around 35–40 sr and were even lower for regional background dust conditions (20–30 sr). The reason for these low values may be partly related to the direct emission and emission of re-suspended salt dust (initially originated from numerous desiccating lakes and the Aralkum desert). Detailed correlation studies (e.g., lidar ratio vs. depolarization ratios and Angstrom exponent vs. lidar ratio and vs. depolarization ratio) are presented to illuminate the complex relationships between the observed optical properties and to identify the contributions of anthropogenic haze, dust, and background aerosol to the overall aerosol mixtures found within the 18-month campaign.
    • Correction
    • Source
    • Cite
    • Save
    73
    References
    11
    Citations
    NaN
    KQI
    []
    Baidu
    map