An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics

2021
In lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~1012 cm−3. We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m−2; and 60 thermal cycles from −40 to 85 °C. Perovskite-like antibonding VBM electronic structure is predicted to result in defect-tolerant materials. Here, the authors investigate GeSe with antibonding VBM from Ge 4s-Se 4p coupling, and a certified 5.2% PCE is obtained with high stability due to its strong covalent bonding.
    • Correction
    • Source
    • Cite
    • Save
    41
    References
    14
    Citations
    NaN
    KQI
    []
    Baidu
    map