Photoelectron Spectroscopy of the Water Dimer Reveals Unpredicted Vibrational Structure.

2021 
Hydrogen bonds and proton transfer reactions can be considered as being at the very heart of aqueous chemistry and of utmost importance for many processes of biological relevance. Nevertheless, these processes are not yet well understood, even in seemingly simple model systems like small water clusters. We present a study of the photoelectron spectrum of the water dimer, revealing previously unresolved vibrational structure with 10-30 meV (80-242 cm-1) typical splitting, in disagreement with a previous theoretical photoionization study predicting an apparent main vibrational progression with an ∼130 meV spacing [Kamarchik et al.; J. Chem. Phys. 2010, 132, 194311]. The observed vibrational structure and its deviation from the theoretical prediction is discussed in terms of known difficulties with calculations of strongly coupled anharmonic systems involving large amplitude motions. Potential contributions of the nonzero vibrational energy of the neutral water dimer at a finite experimental internal temperature are addressed. The internal temperature is estimated from the breakdown diagram associated with the dissociative ionization of the water dimer to be around to 130 K. This analysis also provides two additional, independently measured values for the 0 K appearance energy of the hydronium ion (H3O+) from dissociative ionization of the water dimer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map