Forest wildflowers bloom earlier as Europe warms - but not everywhere equally.

2021 
Some of the most striking biological responses to climate change are the observed shifts in the timing of life-history events of many organisms. Plants, in particular, often flower earlier in response to climate warming, and herbarium specimens are excellent witnesses of such long-term changes. However, in large-scale analyses the magnitude of phenological shifts may vary geographically, and the data are often clustered, and it is thus necessary to account for spatial correlation to avoid geographical biases and pseudoreplication. Here, we analysed herbarium specimens of 20 spring-flowering forest understory herbs to estimate how their flowering phenology shifted across Europe during the last century. Our analyses show that on average these forest wildflowers now bloom over six days earlier than at the beginning of the last century. These changes were strongly associated with warmer spring temperatures. Plants flowered on average of 3.6 days earlier per 1{degrees}C warming. However, in some parts of Europe plants flowered earlier or later than expected. This means, there was significant residual spatial variation in flowering time across Europe, even after accounting for the effects of temperature, precipitation, elevation and year. Including this spatial autocorrelation into our statistical models significantly improved model fit and reduced bias in coefficient estimates. Our study indicates that forest wildflowers in Europe strongly advanced their phenology in response to climate change during the last century, with potential severe consequences for their associated ecological communities. It also demonstrates the power of combining herbarium data with spatial modelling when testing for long-term phenology trends across large spatial scales.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map